National Repository of Grey Literature 27 records found  1 - 10nextend  jump to record: Search took 0.00 seconds. 
Geodesics in the field of a perturbed black hole: where appears chaos?
Polcar, Lukáš ; Semerák, Oldřich (advisor) ; Suková, Petra (referee)
It is widely known that the motion around Schwarzshild black hole is completely integrable. However, after adding a disc or a ring one of the symmetries of the system is broken and the motion may become chaotic for some values of parameters. The aim of this thesis is to identify where appears chaos in static, axially symmetric spacetime by using the geometrical method based on the geodesic deviation equation. Is it possible to predict chaotic behaviour in general relativity solely from local geometrical properties of spacetime, without explicitly solving the geodesic equation? Powered by TCPDF (www.tcpdf.org)
Chaos v porušených polích černých děr
Witzany, Vojtěch ; Semerák, Oldřich (advisor) ; Heyrovský, David (referee)
The loss of complete geodesic integrability is one of the important consequences (and thus indicators) of deviation from the Kerr-type space-time. Indeed, it has been confirmed many times in the literature that even a highly symmetric perturbation of the Kerr or Schwarzschild metric can make the free test-particle motion chaotic. In this thesis, we study the test-particle dynamics in the field of a Schwarzschild black hole surrounded by a thin disc or ring, using, however, Newton's gravity with a simple "pseudo- Newtonian" potential to mimic the black hole. The Poincaré sections show that the (pseudo-)Newtonian system is slightly more chaotic than the general relativistic one. The difference seems to be correlated with the phase-space allowed region being more open towards the center in the pseudo-Newtonian case. Powered by TCPDF (www.tcpdf.org)
Rovnice geodetiky v prostoročasech s helikální symetrií
Tomášik, Miroslav ; Scholtz, Martin (advisor) ; Žofka, Martin (referee)
In this bachelor thesis we investigate geodesics in helically symmetric spacetimes in the framework of linearized Einstein's gravity. Work is an extension of paper by Bičák, Scholtz and Bohata [2], which is under preparation. First we introduce standard numerical methods for solving systems of ordinary differential equations. Next we present helically symmetric solution of linearized Einstein's equations and numerical code solving the geodesic equation on given background. We discuss conditions of existence of helically symmetric solution and finally we present selected results obtained by numerical simulations. We give present few particular examples of geodesics, selected phase portraits obtained by the method of the Lyapunovov exponents and visualize the causal structure of helically symmetric spacetime.
Thin discs and rings as sources of Weyl space-times
Kubíček, Jan ; Semerák, Oldřich (advisor) ; Žofka, Martin (referee)
Static and axially symmetric vacuum solutions of Einstein's equations can be descri- bed by the Weyl metric which only depends on two unknown functions, given by the Laplace equation and a line integral. In this thesis we study some properties of two Weyl space-times whose sources are one-dimensional rings - the Appell ring and the Bach-Weyl ring. On the behaviour of proper distances and geodesics in the central region we demonstrate that in Weyl coordinates these sources represent directional singularities. 1
Properties of the extreme charged black hole near horizon
Hejda, Filip ; Krtouš, Pavel (advisor) ; Svítek, Otakar (referee)
It is known, that there exists a limiting correspondence between certain part (including the horizon) of extremal case of Reissner-Nordström space-time and Robinson-Bertotti space-time and that different generalisations of this near-horizon limit are possible. The aim of the presented work is to examine some of the properties of such limiting transitions. Firstly it is stressed how the global structure is reflected in the limit and secondly which properties of the space-time do provide that physical distances are preserved in the limit. Besides the extremal case the subextremal and hyperextremal generalisations are studied. As a complementary topic, the global extremal limit is stated. That means a transition from a generalised (non-symmetrical) conformal diagram of the subextremal case to the conformal diagram of the extremal case of Reissner-Nordström solution.
Rotating thin disc around a Schwarzschild black hole: properties of perturbative solution
Kotlařík, Petr ; Semerák, Oldřich (advisor) ; Ledvinka, Tomáš (referee)
In 1974, Will presented a solution for the perturbation of a Schwarzschild black hole due to a slowly rotating and light thin disc given in terms of a multipole expansion of the perturbation series. In a recently submitted paper, P. Čížek and O. Semerák generalized this procedure to the perturbation by a slowly rotating finite thin disc, using closed forms of Green functions rather than the multipole expansion. The method is illustrated there, in the first perturbation order, on the constant-density disc. In this thesis, we summarize, check and plot some of the obtained properties, and show how the presence of the disc changes the geometry of a horizon and the position of significant circular orbits. 1
Geodesic chaos in a perturbed Schwarzschild field
Polcar, Lukáš ; Semerák, Oldřich (advisor) ; Kopáček, Ondřej (referee)
We study the dynamics of time-like geodesics in the field of black holes perturbed by a circular ring or disc, restricting to static and axisymmetric class of space-times. Two analytical methods are tested which do not require solving the equations of motion: (i) the so-called geometric criterion of chaos based on eigenvalues of the Riemann tensor, and (ii) the method of Melnikov which detects the chaotic layer arising by break-up of a homoclinic orbit. Predictions of both methods are compared with numerical results in order to learn how accurate and reliable they are.
C-metric as a limit of photon rocket
Hauser, Vít ; Kofroň, David (advisor) ; Švarc, Robert (referee)
Tato práce se zabývá oblastí přesných řešení Einstenových rovnic. Toto téma zůstává po delší dobu předmětem soustředěného studia studia na MFF UK. Zaměřil jsem se na studium kosmické struny u metriky popisující akceleraci dvou černých děr, tzv. C-metriky. Cílem práce je přehledně shrnout vlastnosti několika skupin řešení - Robinson-Trautmanových řešení obecně; specificky fotonových raket a C-metriky. Následně pak ověřit možnost pře- vodu řešení založených na modelu fotonových raket na C-metriku. Zajímavou podúlohou je fokusace záření umožňující popis vakuové C-metriky. K řešení otázek v této oblasti se využívá systémů počítačové algebry k zjednodušování složitých výrazů. V druhé části je předložen problém nalezení alternativního popisu strun v rámci těchto řešení. Rozveden je i jednodušší problém Schwarzschildovy metriky proťaté kosmickou strunou. Podstatou řešení je hledání způsobu přechodu k těmto metrikám. Práce prezen- tuje a diskutuje řešení těchto úloh. Autorovi se, nicméně, nepodařilo popsat systematický způsob jak nalézat řešení s požadovanými vlastnostmi výsledné metriky. 1
The fields of current loops around black holes
Vlasáková, Zuzana ; Semerák, Oldřich (advisor) ; Karas, Vladimír (referee)
The field of a test current loop placed symmetrically in the equatorial plane around a Kerr black hole has been studied several times and solutions have been published in different forms. We compare these results and determine their limits in important places - in radial infinity, on the outer event horizon, on the static limit, in the equatorial plane and on the axis of symmetry. Furthermore, we show the behaviour of the field corresponding to the extreme black hole and verify Meissner effect. In the end we determine the field of a simple model of a current disc by a superposition of test current loops. This problem has an astrophysical motivation - the description of accretion discs in the vicinity of black holes. 1
Black holes under the influence of strong sources of gravitation
Kotlařík, Petr ; Semerák, Oldřich (advisor) ; Kofroň, David (referee)
In this thesis we study a deformation of a black-hole spacetime due to another strong sources of gravity. Keeping within static and axially symmetric metrics, we consider a binary of Schwarzschild black holes held apart from each other by a repulsive effect of an Appell ring. After verifying that such a system can rest in static equilibrium (without any supporting struts), we compute its several basic geometric characteristics and we plot simple invariants determined by the metric functions (especially lapse, or, equivalently, potential) and by their first and second derivatives (gravitational acceleration and Kretschmann scalar). Then we extend the analysis below the black-hole horizon and inspect the behaviour of the scalars inside. The geometry turns out to be deformed in a non-trivial way, we even find regions of negative Kretschmann scalar in some cases. In the second part, we present a summary of the perturbative solution describing a slowly rotating system of a black hole surrounded by a thin finite circular disc, and an analysis of equatorial circular geodesics in such a spacetime. 1

National Repository of Grey Literature : 27 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.